Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(12)2022 11 25.
Article in English | MEDLINE | ID: covidwho-2123877

ABSTRACT

Within the successive waves that occurred during the SARS-CoV-2 pandemic, recommendations arose to test symptomatic and contact subjects by using rapid antigen devices directed against the viral nucleocapsid protein with the aim to isolate contagious patients without delay. The objective of this study was to evaluate the ability of four rapid lateral-flow tests (RLFT) that were commercially available on the French market in 2022 to recognize various strains of SARS-CoV-2. Series of five-fold dilutions of seven viral suspensions belonging to different lineages of SARS-CoV-2 (19A, 20A, Alpha, Beta, Gamma, Delta and Omicron) were used to evaluate the analytical sensitivity of four commercially available RLFTs (manufacturers: Abbott, AAZ, Becton-Dickinson and Biospeedia). Cell culture and quantitative RT-PCR were used as references. Excellent correlations were observed for each lineage strain between the viral titer obtained via cell culture and the number of RNA copies measured by quantitative RT-PCR. Although the four tests were able to recognize all the tested variants, significant differences in terms of sensitivity were observed between the four RLFTs. Despite the limitation represented by the small number of devices and clinical isolates that were tested, this study contributed by rapidly comparing the sensitivity of SARS-CoV-2 RLFTs in the Omicron era.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Suspensions , Nucleocapsid Proteins/genetics , Nucleoproteins/genetics , Sensitivity and Specificity
3.
Int Marit Health ; 72(3): 155-162, 2021.
Article in English | MEDLINE | ID: covidwho-1450924

ABSTRACT

BACKGROUND: During cruises, the management of coronavirus disease 2019 (COVID-19) infections poses serious organizational problems such as those encountered in 2020 by the Zaandam, the aircraft carrier Charles de Gaulle or the Diamond Princess. In French Polynesia, the mixed cargo ship Aranui 5 transports both tourists and freight to the Marquesas Islands. The purpose of this article is to show how COVID-19 infections were diagnosed and contained before and after passengers boarded a cruise. MATERIALS AND METHODS: On October 15, 2020, 161 passengers including 80 crew members embarked for a 13-day voyage from Papeete to the Marquesas Islands. Prior to boarding, all passengers underwent a reverse transcriptase-polymerase chain reaction (RT-PCR) test; the tests results were all negative. On Day 0, 3, 5, 8 and 11, Biosynex® rapid antigen diagnostic tests were carried out on all or some of the crew members and tourists who may have had contact with new positive cases. Each day, forehead or temporal temperatures were measured using an infrared thermometer and questions were asked concerning the subjects' health status. When a subject was positive, the person and their contacts were isolated in individual cabins. The infected person then left the vessel to be received in a communal reception centre on the nearest island. RESULTS: A total of 9 positive cases were observed, including two before departure (a tourist and a crew member). During the trip, 7 crew members tested positive. The patients and their contacts were isolated and then disembarked at the earliest opportunity. At the time of sampling, the subjects were asymptomatic. The patients and their contacts all became symptomatic within 24 to 48 hours after sampling. CONCLUSIONS: In total, the voyage could be completed without any transmission on board among the tourists and with a minimum transmission among the crew members, thus maintaining the tourist and economic activity of the islands during the times of COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , COVID-19/prevention & control , Naval Medicine/methods , Body Temperature , COVID-19/epidemiology , COVID-19 Testing , Contact Tracing/methods , Humans , Occupational Exposure , Polynesia , Quarantine/methods , SARS-CoV-2 , Ships , Travel
4.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1066814

ABSTRACT

This study assessed the diagnostic performance of the new COVID19SEROSpeed IgM/IgG rapid test (BioSpeedia, a spinoff of the Pasteur Institute of Paris) for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in comparison to other commercial antibody assays through a large cross-European investigation. The clinical specificity was assessed on 215 prepandemic sera (including some from patients with viral infections or autoimmune disorders). The clinical sensitivity was evaluated on 710 sera from 564 patients whose SARS-CoV-2 infection was confirmed by quantitative reverse transcription-PCR (qRT-PCR) and whose antibody response was compared to that measured by five other commercial tests. The kinetics of the antibody response were also analyzed in seven symptomatic patients. The specificity of the test (BioS) on prepandemic specimens was 98.1% (95% confidence interval [CI], 96.2% to 99.4%). When tested on the 710 pandemic specimens, BioS showed an overall clinical sensitivity of 86.0% (95% CI, 0.83 to 0.89), with good concordance with the Euroimmun assay (overall concordance of 0.91; Cohen's kappa coefficient of 0.62). Due in part to simultaneous detection of IgM and IgG for both S1 and N proteins, BioS exhibited the highest positive percent agreement at ≥11 days post-symptom onset (PSO). In conclusion, the BioS IgM/IgG rapid test was highly specific and demonstrated a higher positive percentage of agreement than all the enzyme-linked immunosorbent assay/chemiluminescence immunoassay (ELISA/CLIA) commercial tests considered in this study. Moreover, by detecting the presence of antibodies prior to 11 days PSO in 78.2% of the patients, the BioS test increased the efficiency of the diagnosis of SARS-CoV-2 infection in the early stages of the disease.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/pathology , Chromatography, Affinity , Europe , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Time Factors
5.
Cell Mol Immunol ; 18(2): 318-327, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060623

ABSTRACT

Understanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection against reinfection and, thus, for public health policy and vaccine development for COVID-19. In this study, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum samples from a cohort of 140 SARS-CoV-2 qPCR-confirmed infections, including patients with mild symptoms and also more severe forms, including those that required intensive care. We show that nAb titers correlated strongly with disease severity and with anti-spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers; conversely, patients with milder disease symptoms had heterogeneous nAb titers, and asymptomatic or exclusive outpatient-care patients had no or low nAbs. We found that nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery compared to individuals infected with other coronaviruses. Moreover, we found an absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAbs against SARS-CoV-2. Finally, we found that the D614G mutation in the spike protein, which has recently been identified as the current major variant in Europe, does not allow neutralization escape. Altogether, our results contribute to our understanding of the immune correlates of SARS-CoV-2-induced disease, and rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2 is warranted.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL